2,157 research outputs found

    The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation

    Get PDF
    The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient β, the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and the onset of non-Darcy flow

    Molecular random tilings as glasses

    Full text link
    We have recently shown [Blunt et al., Science 322, 1077 (2008)] that p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long range correlations punctuated by sparse localised tiling defects. In this paper we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We show that the structural relaxation of these systems is via the propagation--reaction of tiling defects, giving rise to dynamic heterogeneity. We study the scaling properties of the dynamics, and discuss connections with kinetically constrained models of glasses.Comment: 5 pages, 5 figure

    RadVel: The Radial Velocity Modeling Toolkit

    Get PDF
    RadVel is an open source Python package for modeling Keplerian orbits in radial velocity (RV) time series. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented realtime MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.Comment: prepared for resubmission to PAS

    Home-city geographies: urban dwelling and mobility

    Get PDF
    Developing an agenda to conceptualise the connections between the domestic and the urban, this paper focuses on urban domesticities (homemaking in the city), domestic urbanism (the city as home) and the home-city geographies that connect them. Home-city geographies examine the interplay between lived experiences of urban homes and the contested domestication of urban space. Reflecting the ways in which urban homes and the ability to feel at home in the city are shaped by different migrations and mobilities, the paper demonstrates that not only home and the city, but also urban dwelling and mobility, are intertwined rather than separate

    Simultaneous oil recovery and residual gas storage: A pore-level analysis using in-situ X-ray micro-tomography

    Get PDF
    We imaged sandstone cores at residual gas saturation (Sgr) with synchrotron radiation at a nominal resolution of (9 μm)3. We studied two three-phase flooding sequences: (1) gas injection into a core containing oil and initial water followed by a waterflood (gw process); (2) gas injection into a waterflooded core followed by another waterflood (wgw process). In the gw flood we measured a significantly higher Sgr (=20.6%; Sgr in the wgw flood was 5.3%) and a significantly lower residual oil saturation (Sor; Sor in the gw flood was 21.6% and Sor in the wgw flood was 29.3%). We also studied the size distribution of individual trapped clusters in the pore space. We found an approximately power-law distribution N ∝ s−τ with an exponent τ = 2.02–2.03 for the residual oil clusters and τ = 2.04 for the gas clusters in the gw flood. τ (=2.32) estimated for the gas clusters in the wgw process was significantly different. Furthermore, we calculated the surface area A–volume V relationships for the clusters. Again an approximate power-law relationship was observed, A ∝Vp with p ≈ 0.75. Moreover, in the gw flood sequence we identified oil layers sandwiched between the gas and water phases; we did not identify such oil layers in the wgw flood.These results have several important implications for oil recovery, carbon geo-sequestration and contaminant transport: (a) significantly more oil can be produced and much more gas can be stored using a gw flood; (b) cluster size distributions for residual oil or gas clusters in three-phase flow are similar to those observed in analogue two-phase flow; (c) there is a large cluster surface area available for dissolution of the residual phase into an aqueous phase; however, this surface area is significantly smaller than predicted by percolation theory (p ≈ 1), which implies that CO2 dissolution trapping and contamination of aquifers by hazardous organic solvents is slower than expected because of reduced interfacial contact areas

    Open-source development experiences in scientific software: the HANDE quantum Monte Carlo project

    Full text link
    The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code developed by a geographically-dispersed team with a variety of backgrounds in computational science. In the course of preparing a public, open-source release, we have taken this opportunity to step back and look at what we have done and what we hope to do in the future. We pay particular attention to development processes, the approach taken to train students joining the project, and how a flat hierarchical structure aids communicationComment: 6 pages. Submission to WSSSPE

    Globe’s encounters and the art of rolling: home, migration and belonging

    Get PDF
    This article explores the multiple and multifarious encounters of and with Globe, a 1-metre-diameter copper spherical sculpture hosting four cameras that has been rolled by the artist Janetka Platun and others in London, Shrewsbury and Delhi. Situating Globe in relation to Janetka’s art practice and the wider ‘art of rolling’, and extending broader debates about globality, encounter and relational aesthetics, the article argues that Globe’s journeys generated ‘meaningful content’ beyond an aesthetic moment of interaction by inspiring people to share stories, ideas and reflections on home, migration and belonging through their encounters with her. Globe’s encounters were inspired by curiosity, often sparked by her materiality, mobility and ‘globe-ness’. Rather than merely act as a prompt for people to reflect on home, migration and belonging, Globe has also been marked by her own journeys and encounters, reflecting their unpredictable and often transformative nature

    Determination of contact angles for three-phase flow in porous media using an energy balance

    Get PDF
    HYPOTHESIS: We define contact angles, θ, during displacement of three fluid phases in a porous medium using energy balance, extending previous work on two-phase flow. We test if this theory can be applied to quantify the three contact angles and wettability order in pore-scale images of three-phase displacement. THEORY: For three phases labelled 1, 2 and 3, and solid, s, using conservation of energy ignoring viscous dissipation (Δa1scosθ12-Δa12-ϕκ12ΔS1)σ12=(Δa3scosθ23+Δa23-ϕκ23ΔS3)σ23+Δa13σ13, where ϕ is the porosity, σ is the interfacial tension, a is the specific interfacial area, S is the saturation, and κ is the fluid-fluid interfacial curvature. Δ represents the change during a displacement. The third contact angle, θ13 can be found using the Bartell-Osterhof relationship. The energy balance is also extended to an arbitrary number of phases. FINDINGS: X-ray imaging of porous media and the fluids within them, at pore-scale resolution, allows the difference terms in the energy balance equation to be measured. This enables wettability, the contact angles, to be determined for complex displacements, to characterize the behaviour, and for input into pore-scale models. Two synchrotron imaging datasets are used to illustrate the approach, comparing the flow of oil, water and gas in a water-wet and an altered-wettability limestone rock sample. We show that in the water-wet case, as expected, water (phase 1) is the most wetting phase, oil (phase 2) is intermediate wet, while gas (phase 3) is most non-wetting with effective contact angles of θ12≈48° and θ13≈44°, while θ23=0 since oil is always present in spreading layers. In contrast, for the altered-wettability case, oil is most wetting, gas is intermediate-wet, while water is most non-wetting with contact angles of θ12=134°±~10°,θ13=119°±~10°, and θ23=66°±~10°

    Surface integrity of additive manufacturing parts: a comparison between optical topography measuring techniques

    Get PDF
    Additive Manufacturing (AM) presents significant industry-specific advantages allowing the creation of complex geometries and internal features that cannot be produced using conventional manufacturing processes. However, a current limitation of AM is the degraded dimensional control and surface integrity of specific surfaces. The parts are constructed through layer-by-layer approach, each layer presenting a characteristic ‘fingerprint’. The functional performance of the final part is influenced by the morphology of the outer surface as well as by the surface quality introduced at intermediate layers. Surface texture metrology therefore can play an enabling role in AM-related manufacture and research. The use of optical topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information. Some of the most commonly used optical measuring instruments are Vertical Scanning Interferometry (CSI), Imaging Confocal Microscopy (CONF), and Focus Variation (FV), each one has benefits and drawbacks in terms of acquisition time and measurement resolution. AM surfaces overall present complex topographical features, requiring the acquisition of large surface areas and large z-scans which considerably increases the acquisition time. Speed is a key factor in industrial practice, and time optimization is required for quality control and surface analysis before down-stream processes. This paper reports on the measurement and characterisation of the surface texture of metal powder bed fusion AM parts. All measurements were performed in the same SENSOFAR S-NEOX instrument using the commonly used optical technologies (CSI, CONF, and FV) and the latest step in confocal measurement technology called Continuous Confocal (C-CONF). The resolution and acquisition time of each technique is analysed in order to check the suitability of each method to characterize and describe the AM surface microstructures in a time-efficient way

    Pore-scale mechanisms of CO2 storage in oilfields

    Get PDF
    Rapid implementation of global scale carbon capture and storage is required to limit temperature rises to 1.5 °C this century. Depleted oilfields provide an immediate option for storage, since injection infrastructure is in place and there is an economic benefit from enhanced oil recovery. To design secure storage, we need to understand how the fluids are configured in the microscopic pore spaces of the reservoir rock. We use high-resolution X-ray imaging to study the flow of oil, water and CO2 in an oil-wet rock at subsurface conditions of high temperature and pressure. We show that contrary to conventional understanding, CO2 does not reside in the largest pores, which would facilitate its escape, but instead occupies smaller pores or is present in layers in the corners of the pore space. The CO2 flow is restricted by a factor of ten, compared to if it occupied the larger pores. This shows that CO2 injection in oilfields provides secure storage with limited recycling of gas; the injection of large amounts of water to capillary trap the CO2 is unnecessary
    corecore